Pancyclic out-arcs of a vertex in a hypertournament

نویسندگان

  • Yubao Guo
  • Michel Surmacs
چکیده

A k-hypertournament H on n vertices, where 2 ≤ k ≤ n, is a pair H = (V,AH), where V is the vertex set of H and AH is a set of k-tuples of vertices, called arcs, such that for all subsets S ⊆ V of order k, AH contains exactly one permutation of S as an arc. Inspired by the successful extension of classical results for tournaments (i.e. 2-hypertournaments) to hypertournaments, by Gutin and Yeo [J. Graph Theory 25 (1997), 277–286] and Li et al. [Discrete Appl. Math. 161 (2013), 2749–2752], we will prove the following: every strong k-hypertournament on n vertices, where n ≥ k+2 ≥ 3, contains a vertex all of whose out-arcs are pancyclic. This is a generalization of a known result for tournaments, by Yao et al. [Discrete Appl. Math. 99 (2000), 245–249]. Furthermore, our result is best possible in the sense that the bound n ≥ k + 2 is tight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex-pancyclicity of hypertournaments

Abstract: A hypertournament or a k-tournament, on n vertices, 2≤k≤n, is a pair T= (V,E), where the vertex setV is a set of size n and the edge setE is the collection of all possible subsets of size k of V, called the edges, each taken in one of its k! possible permutations. A k-tournament is pancyclic if there exists (directed) cycles of all possible lengths; it is vertex-pancyclic if moreover ...

متن کامل

An s-strong tournament with s>=3 has s+1 vertices whose out-arcs are 4-pancyclic

An arc in a tournament T with n 3 vertices is called k-pancyclic, if it belongs to a cycle of length for all k n. In this paper, we show that each s-strong tournament with s 3 contains at least s + 1 vertices whose out-arcs are 4-pancyclic. © 2006 Elsevier B.V. All rights reserved.

متن کامل

t-Pancyclic Arcs in Tournaments

Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...

متن کامل

Characterizations of vertex pancyclic and pancyclic ordinary complete multipartite digraphs

A digraph obtained by replacing each edge of a complete multipartite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a complete multipartite digraph. Such a digraph D is called ordinary if for any pair X, Y of its partite sets the set of arcs with end vertices in X ∪ Y coincides with X × Y = {x, y) : x ∈ X, y ∈ Y } or Y ×X or X×Y ∪Y ×X. We characterize a...

متن کامل

The number of pancyclic arcs in a k-strong tournament

A tournament is a digraph, where there is precisely one arc between every pair of distinct vertices. An arc is pancyclic in a digraph D, if it belongs to a cycle of length l, for all 3 <= l <= |V (D)|. Let p(D) denote the number of pancyclic arcs in a digraph D and let h(D) denote the maximum number of pancyclic arcs belonging to the same Hamilton cycle of D. Note that p(D) >= h(D). Moon showed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2015